If it's not what You are looking for type in the equation solver your own equation and let us solve it.
625x^2+18x-1=0
a = 625; b = 18; c = -1;
Δ = b2-4ac
Δ = 182-4·625·(-1)
Δ = 2824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2824}=\sqrt{4*706}=\sqrt{4}*\sqrt{706}=2\sqrt{706}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{706}}{2*625}=\frac{-18-2\sqrt{706}}{1250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{706}}{2*625}=\frac{-18+2\sqrt{706}}{1250} $
| 7-3(2x-5)=(3x+7) | | n-1+n+n+1=30 | | x2+5x+-48=0 | | 4x+33=-15 | | 40n-40=7(-2n+2) | | X+3=7y | | 40-40=7(-2n+2) | | 3c/4=(C=8 | | 4x+15-2x=20-x | | X^2+y^2+10×+12y=-62 | | -8=-1.3m-2.1m | | 5n+6=30,n= | | 5y=-6+4 | | 4x²+22x-30=0 | | 3x^2=513-6 | | 2x/3+x/5=26 | | x+25=3(x-25) | | 9(e-4)=3e | | 7x=5(x-3) | | 1.3(9+3)=3x+1 | | 2q+12=6 | | 25-7x=-3 | | 3(8-y)=-(y+4) | | 5x=3=46 | | 6x+9=9x-10 | | b/5=32/10 | | 3x+1/3=70 | | a-1/2=14 | | 5x+96=13-8 | | 5x−8=2x−5 | | 2x−2=9x−565x−5 | | −4x–14=10 |